# Above Sheathing Ventilation In Tile Roof Installations

PAC Presentation September 13, 2007 Jerry Vandewater

#### Steep-Slope Assembly on ESRA at Oak Ridge National Laboratory









| 8                                     | 0                                     | 6                                           | 6                      | 4                          | 3                            | 2                            | 0                |    |
|---------------------------------------|---------------------------------------|---------------------------------------------|------------------------|----------------------------|------------------------------|------------------------------|------------------|----|
| 48"                                   | 48"                                   | 54"                                         | 60"                    | 48"                        | 48'                          | 48"                          | 48"              |    |
| Metal<br>Shake<br>Classic<br>Products | Metal<br>Shake<br>Classic<br>Products | Asphalt<br>Shingle<br>Certinteed<br>Shingle | Concrete<br>S<br>Eagle | Concrete<br>Flat<br>Monier | Concrete<br>Medium<br>Monier | Concrete<br>Medium<br>Hanson | Clay<br>S<br>MCA | 16 |

#### **Plan View of Steep-Slope Assembly**

#### S-Mission Tile Reduce Daytime Heat Gain by 50 to 75% of Gain for Shingle Roof







Note - the Cool Roof transfers much less heat into the living space.



# Florida Solar Energy Center

#### • FSEC July 6, 1992 Report

- Test Criteria
  - Black asphalt shingles were used as a baseline comparison
- Test Conclusions
  - Counter batten system reduced ceiling heat flux by 48%
  - Direct deck system reduced ceiling heat flux by 39%

# "THE COOL ROOF"

- Light colored high profiled tiles, (if possible with reflective coating).
- Tiles laid on counter battens
- Ventilation of the batten space at the eaves level and at higher level.
- Radiant barrier at rafter height.
- Roof space ventilation at eaves, ridge and gable.
- Insulation at ceiling or rafter height

# What makes a roof "Cool"?

- High surface reflectivity
- High emissivity
- Air circulation Above Sheathing Ventilation (AVS)

### **California Climate Zones**



• Climate Zones 9-15 represent greatest challenge for energy savings.

• Tile roofs most common new construction roofing material.

• Compare existing methods of installation to methods that employ enhanced air flow between the roof deck and roofing material.

 Analyze Above Sheathing Ventilation (AVS) Energy benefits of a tiled roof compared with shingle roof (in climate 15 – El Centro) - with/without insulation, radiant barrier & duct work

Scenario 1 – benefit 34% – 1. Annual cooling energy only Scenario 2 – benefit 31% – 1. Annual cooling energy plus 2. Annual heating energy Scenario 3 – benefit 27% – 1. Annual cooling energy plus 2. Annual heating energy plus **3.** Annual duct losses Scenario 4 – benefit 14% – 1. Annual cooling energy plus 2. Annual heating energy plus 3. Annual duct losses plus 4. Attic with insulation & radiant barrier





#### The role of air movement in the batten-space Study conducted by Lafarge Roofing Technical Centers

- Tiles and slates are air permeable providing an air permeability of approximately 0.5% to 1% of the laid area.
- Complicated flow networks are found between tiles and underlayment
- The flow between tiles and underlayment will influence:
  - The energy performance of the roof
  - The wind loading on the tiles
  - The driving-rain performance
  - The dispersion of moisture



#### Limited ASV versus full ASV Main findings

- A flat tile with limited Above Sheathing Ventilation meets the performance of the default construction.
- The higher thermal mass of the tile also contributes to the benefit:
  - Tile mass: 10.2 lb/ft<sup>2</sup> Default construction: 1.7 lb/ft<sup>2</sup>
- Improved ASV under the roof tiles reduces the annual energy losses the tile roof is then always at least equal to the default construction

#### Improved ASV is achieved by:

- Elevating the roof tiles with counter-battens.
- Using profiled tiles instead of flat tiles.
- Increasing the ridge & eaves ventilation.
- <u>All</u> of these improvements reduce the air flow resistance under the tiles and improve the energy benefits from ASV.

# Above Sheathing Ventilation

- As the temperature under the tile increases, the heated air rises toward the ridge, drawing cooler air into the system through the vented eave risers.
- The heated air exhausts through the vented ridge assembly. The high profile tile allows more heated air to exhaust from beneath the cap tiles.



# Flat tiles attached direct to deck



#### Air movement in the batten-space; mono-pitch vs. duo-pitch

- Complicated flow networks are found in both mono-pitch & duo-pitch roof types
- The ventilation rate & heat benefits from wind driven air flows are broadly similar for both roof types.



#### Cut Away of Installed Raised Fascia Eave Treatment



Anti-ponding mechanism required at all raised fascias.

Minimal air intake at eave.

# Birdstop- supports first course, closes opening, weep holes provide drainage.



# **Vented Eave Riser**

- Birdstop modified to increase airflow.
- Protects against the entry of birds or rodents.
- Prevents entry of blowing embers.







## **Single Batten Installation**



### Flat tiles on battens



## S-tile on single batten.



#### **Airspace beneath S-tile**

Natural airspace along with air permeability of installed tiles promotes air flow beneath and around tiles.

#### **Natural Airspace**



# **Counter Batten on Low slope**



## **Counter Batten System**



# **Optimized Systems**



# **Typical Ridge Detail.**





# Standard vs. Cool Roof

- Dark Colored Tiles
  Light Colored Tiles
- Asphalt underlayment

- Radiant Barrier
- Counter battens

- Direct to deck attachment
- Minimal ventilation
- Balanced Ventilation