3M Cool Roofing Granules

California Energy Committee
PAC Meeting
March 3, 2005
Cool Roofing Granules

3M, LBNL, and ORNL have been collaborating in the area of Cool Roofing since 1995

Why granules?

Shingle Market
- Most widespread residential roofing choice
- High consumer awareness and acceptance
- Shingle roofing costs are lower than most other alternatives
Cool Roofing Granules

- Roofing Granules
 - Weight
 - UV-Protection
 - Aesthetics
- Roofing granules comprise the vast majority of visible surface area on a shingle
- To achieve shingle reflectance values, granules must be reflective
Project Objectives

- Ultimate goal is to produce reflective granules that allow shingle manufacturers to produce reflective shingles
- The ideal way to accomplish this is to make the granules/shingles as white as possible
- For consumers, bright white shingles are not desirable aesthetically
- CEC/LBNL Program to develop cool colored roofing materials
 - Infrared reflecting pigments – absorb energy in the visible portion of the solar spectrum
Developmental Approach

• Have evaluated the following issues:

- Pigments (loadings, IRR) – expensive!
 LBNL Pigment database
- Coating(s)
- Asphalt Effects (~2-3% ↓)
- Granule Grade Effects
- Coverage Effects
- Post-treatment
Developmental Approach

Reflective Primary Coating

Can be manufactured w/ existing infrastructure

Outer Coating (contains IR-reflecting pigments)

2-Pass Coating

Base Mineral
Reflectance Comparison

Air Mass 1.5 Hemispherical 37 Deg. Solar Reflectivities

<table>
<thead>
<tr>
<th></th>
<th>37EEC (White Basecoat)</th>
<th>37EEC (No Basecoat)</th>
<th>Standard Green</th>
<th>68 EEC 1 (White Basecoat)</th>
<th>68 EEC (No Basecoat)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reflectance</td>
<td>27.92</td>
<td>14.48</td>
<td>8.17</td>
<td>33.84</td>
<td>18.54</td>
</tr>
</tbody>
</table>

Air Mass 1.5 Direct Normal 37 Deg Solar Reflectivities

<table>
<thead>
<tr>
<th></th>
<th>37EEC (White Basecoat)</th>
<th>37EEC (No Basecoat)</th>
<th>Standard Green</th>
<th>68 EEC 1 (White Basecoat)</th>
<th>68 EEC (No Basecoat)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reflectance</td>
<td>28.98</td>
<td>14.98</td>
<td>8.45</td>
<td>34.44</td>
<td>18.66</td>
</tr>
</tbody>
</table>
Post-Treatment Effects
Post-Treatment Effects

Weatherometer Testing - 600 Hours

- Xenon Arc => 102 min. @ 63°C, 18min. light plus water spray
- QUV (Fluorescent) => 5 Hrs at 37°C, 1 Hr dark with condensation

<table>
<thead>
<tr>
<th></th>
<th>Sample #</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>top</td>
<td>0.009</td>
<td>0.015</td>
<td>0.000</td>
<td>0.009</td>
<td>0.004</td>
<td>0.010</td>
<td>0.007</td>
<td>0.003</td>
</tr>
<tr>
<td>bottom</td>
<td>0.009</td>
<td>0.007</td>
<td>0.010</td>
<td>0.010</td>
<td>0.006</td>
<td>0.005</td>
<td>0.004</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>0.007</td>
<td>0.007</td>
<td>0.005</td>
<td>0.008</td>
<td>0.006</td>
<td>0.008</td>
<td>0.009</td>
<td>0.008</td>
</tr>
</tbody>
</table>
Cool Granule Products

5 Cool Granule Colors – Solar Reflectance

- Cool Tan – 32%
- Cool Brown – 25%
- Cool Blue Grey – 27%
- Cool Grey – 27%
- WA9300 White – 29%
Conclusions

- Dark mineral color and granule roughness (multiple scattering events) detracts from reflectance potential
- Multipass coatings and infrared-reflecting pigments can improve relative granule reflectances
 - Resultant granule colors not as rich as standard granules
 - Process/pigments adds significantly to the cost
- Higher reflectance values can be achieved
 - Additional cost is added
 - Aesthetics further degraded
- Continuing research to generate further advances
 - Current approach provides best balance of competing factors
Future Plans

Future Directions

- Optimize coating technology
- Accelerate Agency (CRRC, Energy Star) qualifications
- Develop relationship between granule reflectance values and ultimate shingle reflectances – coating analogy
- Collaborate to quantify savings potentials of reflective granule/shingle products