Cool Colors for Summer

Characterizing the Radiative Properties of Pigments for Cool Roofs

Ronnin Levinson, Ph.D.
Scientist, Heat Island Group

EETD Noon Seminar
Thursday, 22 April 2004
Presentation Overview

I. Introduction to cool colored roofs
II. Characterizing the solar spectral radiative properties of pigments
III. Identifying cool and hot pigments
Part I

Introduction to

Cool Colored Roofs
Cool Roof Technologies

Old

- flat, white

New

- pitched, cool & colored

- pitched, white
Cool Roof Benefits

- For buildings
 - Reduce air conditioning energy use ~ 10%
 - Cool interior of unconditioned homes
 - May last longer (less thermal stress)
- For cities with many cool roofs
 - Can lower outside air temperature ~ 1-2 °C
 - Reduces smog
Radiative Properties of a Cool Roof Surface

• High solar reflectance (white, cool color, shiny metal)
 – Ability to reflect sunlight (0.3-2.5 µm)
 – High solar reflectance prevents solar heat gain

• High thermal emittance (not a bare metal)
 – Ability to radiate heat (~10 µm)
 – High thermal emittance dissipates solar heat gain

• Our focus: high solar reflectance for colored surfaces
Need for **Cool Colors**

- White roofs are very cool...
 - Initial solar reflectance > 0.7
 - Ideal for roofs out of view

...but many homeowners prefer nonwhite roofs

- **Cool colored** roofs
 - Match standard colors
 - Reflect more *invisible* sunlight (near-infrared)
Cool Colors Reflect Invisible Near-Infrared Sunlight

Solar Energy Distribution

- 5% ultraviolet (300-400 nm)
- 43% visible (400-700 nm)
- 52% near-infrared (700-2500 nm)
Increasing Solar Reflectance Using Cool Colors

– 52% of sunlight is near-infrared (NIR) radiation
– Standard colors
 • Light colors have high visible, NIR reflectances
 • Dark colors have low visible, NIR reflectances
– Cool colors
 • Have high NIR reflectance
 • Visible reflectance depends on color
 • Increasing NIR reflectance from 0 to 1 raises solar reflectance by about 0.5
 • Solar reflectance gains greatest for dark colors
 – Low initial NIR reflectance
Example 1: Cool and Standard Color-Matched Concrete Tiles

- Solar reflectance gains typically about 0.3
- Gains greatest for dark colors
Example 2: Cool and Standard Brown Metal Roofing Panels

- Solar reflectance ~ 0.2 higher
- Afternoon surface temperature ~ 10°C lower

Courtesy BASF Coatings

![Cool and Standard Brown Metal Roofing Panels](image)
Part II

Characterizing the Solar Spectral Radiative Properties of Pigments
Our Cool Pigment Research

• Objective
 – Improve solar reflectance of architectural coatings by identifying cool and hot pigments

• Approach: investigate solar spectral properties
 – Reflectance, transmittance, absorptance of paint films
 – Scattering, absorption by pigments in transparent media

\[
\text{transparent medium} + \text{pigment particles} = \text{pigmented coating (paint film)}
\]
Near-Infrared Absorption

- Near-infrared (NIR) radiation
 - Invisible
 - 0.7 - 2.5 \(\mu \text{m} \)
 - 52% of sunlight

- Absorption converts light to heat
 - Strong NIR absorption \(\rightarrow \) hot pigment
 - Weak NIR absorption \(\rightarrow \) cool pigment
Cool Pigments Scatter and/or Transmit NIR Radiation

• Scattering (backscattering) reflects radiation
• Some cool pigments strongly scatter NIR light
 – Classified as *NIR-scattering* cool pigments
 – Produce cool coatings over any background
• Other cool pigments weakly scatter NIR light
 – Classified as *NIR-transmitting* cool pigments
 – Produce cool coatings over NIR-reflective backgrounds
Preparing Paint Film (Pigment in Transparent Medium)

• Create thin pigmented film (~ 25 µm)
 – Polyvinylidene fluoride (PVDF) resin paint (no substrate)
 – Acrylic resin paint (clear polyester substrate)
• Cut out 3 samples; measure thicknesses
• Undercoat 2 samples, leaving 3rd as free film

acra red over opaque white

acra red over opaque black
Measuring Solar Spectral Properties of Pigmented Film

• Four solar spectral measurements
 – Transmittance \((T)\) of free film
 – Reflectance \((R)\) of free film
 – Reflectance of film over opaque black
 • Minimum possible reflectance
 – Reflectance of film over opaque white
 • Maximum possible reflectance (approximately)

• Measurements span 300 - 2,500 nm @ 5 nm
Sample Film Measurements

Reflectance over white

Free-film transmittance

Absorptance

Reflectance over black

Wavelength (nanometers)
Estimating Absorption, Scattering Via Empirical Continuum Model

• Treat pigmented film as continuum
• Reflectance, transmittance ↔ scattering, absorption
• Simple model (e.g., Kubelka-Munk)
 – Assumes perfectly diffuse light
 – Describes pigment with just 2 spectral parameters
 – Simple closed-form solutions
• Complex model (e.g., Maheu-Letoulouzan-Gouesbet)
 – Relaxes assumption of perfectly diffuse light
 – Uses at least 4 spectral parameters to describe pigment
 – Unwieldy closed-form solutions
Simplest Continuum Model: Kubelka-Munk (K-M) Two-Flux

Relates pigmented-film properties...
- reflectance (R), transmittance (T),
 thickness (δ), background reflectance (R_g)
...to properties of pigment (in transparent medium)
- absorption coefficient (K), backscattering coefficient (S)
Physical Description of Standard K-M Two-Flux Model

- Film diffusely illuminated from above
- Downward and upward light fluxes \(i(z), j(z) \)
- Fluxes can be partially absorbed or backscattered while traversing a thin slice of the film \((dz)\)
- Backscattering transfers light to opposite flux \((i \leftrightarrow j)\)
- Each wavelength of light considered independently
- Describes only light inside film (excludes air/film interfaces)
Mathematical Description of Standard K-M Two-Flux Model

• Two coupled ordinary differential equations
 \[-\frac{di}{dz} = -(K + S) i + S j\] downflux rate of change
 \[\frac{dj}{dz} = -(K + S) j + S i\] upflux rate of change

• Boundary conditions
 – Unit diffuse illumination at film top
 – Background of reflectance \(R_g\) at film bottom

• Hyperbolic closed-form solutions
 – Film properties \(\{R, T, R_g, \delta\}\) ↔ pigment properties \(\{K, S\}\)
K-M Solutions Are Simple...

Pigment props \rightarrow film props

\[R_f \equiv \left(\frac{j}{i} \right)_{z=\delta} = \frac{1 - R_g(a - b \coth bS\delta)}{a - R_g + b \coth bS\delta} \]

\[a \equiv \frac{(S + K)}{S} \]
\[b \equiv \left(a^2 - 1 \right)^{\frac{1}{2}} \]

\[\tau \equiv \frac{i_{z=0}}{i_{z=\delta}} = \frac{b}{a \sinh bS\delta + b \cosh bS\delta} \]

Film props \rightarrow pigment props

\[S = \frac{1}{b\delta} \left(\text{arccoth} \frac{1-aR_{f,0}}{bR_{f,0}} \right) \]
\[K = (a - 1)S \]

\[a = \frac{1}{2} \left[R_{f,1} + \frac{R_{f,0} - R_{f,1} + R_{g,1}}{R_{f,0}R_{g,1}} \right] \]

\[R_{f,0} = \frac{R_{f,1}R_{g,2} - R_{f,2}R_{g,1}}{R_{g,2} + R_{g,1}(R_{f,1}R_{g,2} - R_{f,2}R_{g,2} - 1)} \]

\[R_{f,0} = \frac{1 + R_{f,1}R_{g,1} - \sqrt{(1 - R_{f,1}R_{g,1})^2 + 4(R_{g,1}\tau)^2}}{2R_{g,1}} \]

...but we’re not done yet!
Interface Reflections Change

Film Reflectance, Transmittance

• Real refractive index n
 – speed of light in vacuum / speed of light in medium
 – About 1 for air, 1.5 for polymer (paint medium)
• Change in n at boundary \rightarrow “interface” reflection
• Example: interface reflectance at air/polymer boundary
 – Small for collimated light (0.04)
 – Small for diffuse light passing to higher n (0.09)
 – LARGE for diffuse light passing to lower n (0.60!)
 • Rays striking at angles greater than critical angle
 $\theta_c=\sin^{-1}(n_{\text{low}}/n_{\text{high}})$ are totally internally reflected
• Film reflectance, transmittance observed in spectrometer depend on interface reflectances
1st Model Improvement:
Correcting Film Reflectance & Transmittance

- Need corrected reflectance, transmittance (absent interface effects) as inputs to K-M model
- Standard adjustment (Saunderson) corrects only film reflectance
 - Permits calculation of K, S from film reflectances measured over two different opaque backgrounds (e.g., black, white)
- **Our new approach corrects both film reflectance and film transmittance**
 - Permits calculation of K, S from reflectance and transmittance of single free film (more accurate)
- Still need to determine magnitudes of interface reflectances (a second issue)
Our 1st Extension of K-M Model
(Correcting Film Reflectance, Transmittance)

- Following terms used in K-M solution
 (film properties \rightarrow pigment properties)

\[
R_{f,0} = \frac{A - B\sqrt{C}}{D}
\]

\[
\begin{align*}
A &= (1 - R_\alpha^i)^2 (1 - R_\gamma^i)^2 (1 + R_{f,1}R_{g,1}) R_{g,1} \\
 &\quad + 2 \left(R_{g,1} - R_\alpha^i R_\gamma^i R_{f,1} \right) \left(\left[(1 + R_{f,1} R_{g,1}) R_\gamma^i - R_{g,1} \right] R_\alpha^i - R_\gamma^i R_{g,1} \right) \tilde{T}^2 \\
B &= (1 - R_\alpha^i) (1 - R_\gamma^i) R_{g,1} \\
C &= (1 - R_\alpha^i)^2 (1 - R_\gamma^i)^2 (1 + R_{f,1} R_{g,1})^2 \\
 &\quad + 4 \left(1 - R_\alpha^i R_{f,1} \right) \left(1 - R_\gamma^i R_{f,1} \right) \left(R_\alpha^i - R_{g,1} \right) \left(R_\gamma^i - R_{g,1} \right) \tilde{T}^2 \\
D &= 2 \left[(1 - R_\alpha^i)^2 (1 - R_\gamma^i)^2 R_{g,1}^2 - (R_\gamma^i R_{g,1} - R_\alpha^i \left[(1 + R_{f,1} R_{g,1}) R_\gamma^i - R_{g,1} \right]) \tilde{T}^2 \right]
\end{align*}
\]

\[
\tau = \frac{-(1 - R_\alpha^i)(1 - R_\gamma^i) + \sqrt{[(1 - R_\alpha^i)(1 - R_\gamma^i)]^2 + 4R_\alpha^i R_\gamma^i(1 - R_{f,0} R_\gamma^i)(1 - R_\alpha^i R_{f,0})\tilde{T}^2}}{2R_\alpha^i R_\gamma^i \tilde{T}}
\]
2nd Model Improvement: Computing Interface Reflectances

- Light incompletely diffuse in weakly scattering pigmented films
 - Incident sunlight ~20% diffuse
 - Incident spectrometer beam 0% diffuse
 - Weakly scattering films slowly diffuse collimated light
- Interface reflectance depends on diffuse fraction (ratio of diffuse flux to total flux)
- We extend K-M model to better estimate diffuse fractions and interface reflectances at film boundaries
Our 2nd Extension of K-M Model
(Algorithm to Compute Interface Reflectances)

- Iterative solution couples diffuse fraction q and interface reflectance ω at each boundary to K, S

\begin{align*}
q_0^i &= 1 - i_c(0)/i(0) \\
q_\delta^j &= 1 - j_c(\delta)/j(\delta) \\
i(0) &= \tilde{T}/(1 - \omega_0^i) \\
j(\delta) &= (\tilde{R}_f - \omega_\delta^i)/(1 - \omega_\delta^j) \\
i_c(0) &= \tilde{T}_c/(1 - \omega_c^i, 0) = \frac{(1 - \omega_{c, \delta}^i)\tau_c}{1 - \tau_c^2 \omega_{c, \delta}^j \omega_{c, 0}^i} \\
j_c(\delta) &= (\tilde{R}_c - \omega_{c, \delta}^i)/(1 - \omega_{c, \delta}^j) = \frac{(1 - \omega_{c, \delta}^i)\omega_{c, 0}^i \tau_c^2}{1 - \tau_c^2 \omega_{c, \delta}^j \omega_{c, 0}^i} \\
\tau_c &= \exp \left\{ -[K + (1 - \sigma)^{-1} S] \delta / \eta \right\}
\end{align*}
Summary of Our Improvements to Two-Flux K-M Model

- Kubelka-Munk theory extended to
 - Correct both film reflectance and transmittance for effects of interface reflectances
 - Estimate magnitudes of interface reflectances
- Retain compact radiative description of pigment using only two spectral parameters (K, S)
- Iteratively solve for absorption, scattering, diffuse fractions, interface reflectances
- About 1,500 lines of code
Our Process for Calculating Solar Spectral K and S

- Three inputs (measurements)
 - Free-film reflectance
 - Free-film transmittance
 - Reflectance of film with opaque black background
- Three outputs (calculations)
 - Absorption coefficient K
 - Backscattering coefficient S
 - Diffuse fraction q
- Validation of results
 - Compare predicted reflectance of film over opaque white background to measured value (not an input to model)
1. Measure Free-Film Reflectance, Transmittance

- Chromium Green-Black Hematite Modified (Cool Black)
- 25-µm film with 7% pigment volume concentration
2. Calculate K-M Coefficients (Absorption K, Backscattering S)

- Chromium Green-Black Hematite Modified (Cool Black)
- 25-μm film with 7% pigment volume concentration
3. Compare Calculated, Measured Reflectances Over White, Black

- Chromium Green-Black Hematite Modified (Cool Black)
- 25-µm film with 7% pigment volume concentration

![Graphs showing reflectance measurements and calculations across different wavelengths.](image)
Computing Backscattering S: Our Model vs. Mie Theory

- Upper curve (gold) = our model
- Open circles = Mie theory for scattering by spheres, plus simple multiple scattering theory
 - 200-nm TiO$_2$ spheres, $n=2.7$
 - Transparent medium, $n=1.5$
- Agreement fair in visible range
- Experimental deficit in the NIR believed due to clumping of pigment particles
Part III

Identifying Cool, Hot Pigments
87 Pigmented Films Characterized

- Single-pigment films (most)
- Each film shown over white, then over black
- Palette
 - 4 white
 - 21 black/brown
 - 14 blue/purple
 - 11 green
 - 9 red/orange
 - 14 yellow
 - 14 pearlescent
Visualizing NIR Performance of Pigmented Films

- Cool, NIR-scattering pigments (lower left) suitable for any background
- Cool, NIR-transmitting pigments (upper left) need cool background
- Hot pigments (right side) to be avoided in cool coatings
Examples of Cool Pigments

- **All are weak NIR absorbers**
- **Strong NIR scatterers** (suitable for any substrate)
 - TiO$_2$ white
 - Nickel titanate and chrome titanate yellows
 - Mixed-metal oxide blacks – (Fe,Cr)$_2$O$_3$, many related compounds
 - Co$_2$TiO$_4$ teal (bluish green)
 - TiO$_2$ on mica flakes - various colors
- **Weak NIR scatterers** (need NIR-reflective substrate)
 - Cobalt chromite, cobalt aluminate, and ultramarine blues
 - Some iron oxide browns (burnt sienna, raw sienna)
 - Many organics (perylene black, phthalo blue, quinacridone red...)
Examples of Hot Pigments

- All are strong NIR absorbers
- Carbon black (also lamp black, ivory black)
- Fe₃O₄ black (magnetite)
- Copper chromite black
- Iron blue KFe₂(CN)₆·H₂O
Two Articles for *Journal of Applied Physics*

- To be submitted pending internal review
- **Radiative Model**
- **Pigment Survey**
 - Levinson, R., P. Berdahl, and H. Akbari. Spectral solar optical properties of pigments, Part II: Survey of common colorants
Pigment Database

- Details 87 pigmented films
- Solar spectral measurements, calculations
- Shared w/industrial partners
- To be used in our cool-color coating design software (under development)
Ongoing Research

• Characterize paint mixtures
 – Tints (color + white)
 – Nonwhite mixtures
 – Goal: develop accurate model that predicts reflectance of mixtures

• Develop cool-colored coating design software
 – Match color
 – Maximize solar reflectance
 – Use paint-mixture theory, pigment database
For More Information...

• Visit the Cool Colors website

http://CoolColors.LBL.gov

for copies of
– this presentation
– our pigment characterization papers
– related cool-colors research