Cool Colors for Summer

Characterizing the Radiative Properties of Pigments for Cool Roofs

Ronnen Levinson, Ph.D. Scientist, Heat Island Group

> EETD Noon Seminar Thursday, 22 April 2004

Presentation Overview

- I. Introduction to cool colored roofs
- II. Characterizing the *solar spectral* radiative properties of pigments
- III. Identifying cool and hot pigments

Part I

Introduction to Cool Colored Roofs

Cool Roof Technologies **Old New**

flat, white

pitched, cool & colored

Cool Roof Benefits

- For buildings
 - Reduce air conditioning energy use $\sim 10\%$
 - Cool interior of unconditioned homes
 - May last longer (less thermal stress)
- For cities with many cool roofs
 - Can lower outside air temperature $\sim 1-2$ °C
 - Reduces smog

Radiative Properties of a Cool Roof Surface

- High solar reflectance (white, cool color, shiny metal)
 - Ability to reflect sunlight (0.3-2.5 μ m)
 - High solar reflectance prevents solar heat gain
- High thermal emittance (not a bare metal)
 - Ability to radiate heat (~10 μ m)
 - High thermal emittance *dissipates* solar heat gain
- Our focus: high solar reflectance for colored surfaces

Need for Cool Colors

- White roofs are very cool...
 - Initial solar reflectance > 0.7
 - Ideal for roofs out of view
 - ...but many homeowners prefer nonwhite roofs
- Cool colored roofs
 - Match standard colors
 - Reflect more *invisible* sunlight (near-infrared)

Cool Colors Reflect Invisible Near-Infrared Sunlight

Increasing Solar Reflectance Using Cool Colors

- 52% of sunlight is near-infrared (NIR) radiation
- Standard colors
 - Light colors have high visible, NIR reflectances
 - Dark colors have low visible, NIR reflectances
- Cool colors
 - Have high NIR reflectance
 - Visible reflectance depends on color
 - Increasing NIR reflectance from 0 to 1 raises *solar* reflectance by about 0.5
 - Solar reflectance gains greatest for dark colors
 - Low initial NIR reflectance

Example 1: Cool and Standard Color-Matched Concrete Tiles

- Solar reflectance gains typically about 0.3
- Gains greatest for dark colors

Example 2: Cool and Standard Brown Metal Roofing Panels

- Solar reflectance ~ 0.2 higher
- Afternoon surface temperature $\sim 10^{\circ}$ C lower

Part II

Characterizing the Solar Spectral Radiative Properties of Pigments

Our Cool Pigment Research

- Objective
 - Improve solar reflectance of architectural coatings by identifying cool and hot pigments
- Approach: investigate solar spectral properties
 - Reflectance, transmittance, absorptance of paint films
 - Scattering, absorption by pigments in transparent media

Near-Infrared Absorption

- Near-infrared (NIR) radiation
 - Invisible
 - 0.7 2.5 μm
 - 52% of sunlight

- Absorption converts light to heat
 - Strong NIR absorption \rightarrow hot pigment
 - Weak NIR absorption \rightarrow cool pigment

Cool Pigments Scatter and/or Transmit NIR Radiation

- Scattering (backscattering) reflects radiation
- Some cool pigments strongly scatter NIR light

 Classified as *NIR-scattering* cool pigments
 Produce cool coatings over any background
- Other cool pigments weakly scatter NIR light
 - Classified as NIR-transmitting cool pigments
 - Produce cool coatings over NIR-reflective backgrounds

Preparing Paint Film (Pigment in Transparent Medium)

- Create thin pigmented film (~ 25 μ m)
 - Polyvinylidene fluoride (PVDF) resin paint (no substrate)
 - Acrylic resin paint (clear polyester substrate)
- Cut out 3 samples; measure thicknesses
- Undercoat 2 samples, leaving 3rd as free film

acra red over opaque white

acra red over opaque black

16

Measuring Solar Spectral Properties of Pigmented Film

- Four solar spectral measurements
 - Transmittance (T) of free film
 - Reflectance (R) of free film
 - Reflectance of film over opaque black
 - *Minimum* possible reflectance
 - Reflectance of film over opaque white
 - *Maximum* possible reflectance (approximately)
- Measurements span 300 2,500 nm @ 5 nm

Absorptance

(A = 1 - R - T)

Sample Film Measurements

Estimating Absorption, Scattering Via Empirical Continuum Model

- Treat pigmented film as continuum
- Reflectance, transmittance \leftrightarrow scattering, absorption
- Simple model (e.g., Kubelka-Munk)
 - Assumes perfectly diffuse light
 - Describes pigment with just 2 spectral parameters
 - Simple closed-form solutions
- Complex model (e.g., Maheu-Letoulouzan-Gouesbet)
 - Relaxes assumption of perfectly diffuse light
 - Uses at least 4 spectral parameters to describe pigment
 - Unwieldy closed-form solutions

Simplest Continuum Model: Kubelka-Munk (K-M) Two-Flux

Relates pigmented-film properties...

- reflectance (*R*), transmittance (*T*), thickness (δ), background reflectance (R_g)
- ...to properties of pigment (in transparent medium)
 - absorption coefficient (K), backscattering coefficient (S)

Physical Description of Standard K-M Two-Flux Model

- Film diffusely illuminated from above
- Downward and upward light fluxes i(z), j(z)
- Fluxes can be partially absorbed or backscattered while traversing a thin slice of the film (dz)
- Backscattering transfers light to opposite flux $(i \leftrightarrow j)$
- Each wavelength of light considered independently
- Describes only light inside film (excludes air/film interfaces)

Mathematical Description of Standard K-M Two-Flux Model

• Two coupled ordinary differential equations

-di/dz = -(K+S) i + S jdj/dz = -(K+S) j + S i downflux rate of change upflux rate of change

- Boundary conditions
 - Unit diffuse illumination at film top
 - Background of reflectance R_g at film bottom
- Hyperbolic closed-form solutions
 - Film properties $\{R, T, R_g, \delta\} \leftrightarrow$ pigment properties $\{K, S\}$

K-M Solutions Are Simple...

<u>Pigment props</u> \rightarrow film props $R_f \equiv \left(\frac{j}{i}\right)_{z=\delta} = \frac{1 - R_g(a - b \coth bS\delta)}{a - R_g + b \coth bS\delta}$ $a \equiv (S+K)/S$ $b \equiv (a^2 - 1)^{\frac{1}{2}}$ $\tau \equiv \frac{i_{z=0}}{i_{z=\delta}} = \frac{b}{a\sinh bS\delta + b\cosh bS\delta}$

Film props \rightarrow pigment props $S = \frac{1}{b\delta} \left(\operatorname{arccoth} \frac{1 - aR_{f,0}}{bR_{f,0}} \right)$ K = (a - 1)S $a = \frac{1}{2} \left[R_{f,1} + \frac{R_{f,0} - R_{f,1} + R_{g,1}}{R_{f,0}R_{g,1}} \right]$ $R_{f,0} = \frac{R_{f,1}R_{g,2} - R_{f,2}R_{g,1}}{R_{g,2} + R_{g,1}(R_{f,1}R_{g,2} - R_{f,2}R_{g,2} - 1)}$ $R_{f,0} = \frac{1 + R_{f,1}R_{g,1} - \sqrt{(1 - R_{f,1}R_{g,1})^2 + 4(R_{g,1}\tau)^2}}{2R_{g,1}}$

rrrr

IIII

...but we're not done yet!

Interface Reflections Change Film Reflectance, Transmittance

- Real refractive index *n*
 - speed of light in vacuum / speed of light in medium
 - About 1 for air, 1.5 for polymer (paint medium)
- Change in *n* at boundary \rightarrow "interface" reflection
- Example: interface reflectance at air/polymer boundary
 Small for collimated light (0.04)
 - Small for diffuse light passing to higher n (0.09)
 - LARGE for diffuse light passing to lower n (0.60!)
 - Rays striking at angles greater than critical angle $\theta_c = \sin^{-1}(n_{\text{low}}/n_{\text{high}})$ are totally internally reflected
- Film reflectance, transmittance observed in spectrometer depend on interface reflectances

rrrr

1st Model Improvement: Correcting Film Reflectance & Transmittance

- Need corrected reflectance, transmittance (absent interface effects) as inputs to K-M model
- Standard adjustment (Saunderson) corrects only film reflectance
 - Permits calculation of *K*, *S* from film reflectances measured over two different opaque backgrounds (e.g., black, white)
- Our new approach corrects both film reflectance <u>and film transmittance</u>
 - Permits calculation of *K*, *S* from reflectance and transmittance of single free film (more accurate)
- Still need to determine magnitudes of interface reflectances (a second issue)

Our 1st Extension of K-M Model (Correcting Film Reflectance, Transmittance)

• Following terms used in K-M solution (film properties → pigment properties)

$$R_{f,0} = \frac{A - B\sqrt{C}}{D}$$

$$A = (1 - R_{\alpha}^{i})^{2} (1 - R_{\gamma}^{i})^{2} (1 + R_{f,1}R_{g,1}) R_{g,1}$$

$$+ 2 (R_{g,1} - R_{\alpha}^{j}R_{\gamma}^{i}R_{f,1}) ([(1 + R_{f,1}R_{g,1}) R_{\gamma}^{i} - R_{g,1}] R_{\alpha}^{j} - R_{\gamma}^{i}R_{g,1}) \tilde{T}^{2}$$

$$B = (1 - R_{\alpha}^{i}) (1 - R_{\gamma}^{i}) R_{g,1}$$

$$C = (1 - R_{\alpha}^{i})^{2} (1 - R_{\gamma}^{i})^{2} (1 + R_{f,1}R_{g,1})^{2}$$

$$+ 4 (1 - R_{\alpha}^{j}R_{f,1}) (1 - R_{\gamma}^{i}R_{f,1}) (R_{\alpha}^{j} - R_{g,1}) (R_{\gamma}^{i} - R_{g,1}) \tilde{T}^{2}$$

$$D = 2 \left[(1 - R_{\alpha}^{i})^{2} (1 - R_{\gamma}^{i})^{2} R_{g,1}^{2} - (R_{\gamma}^{i}R_{g,1} - R_{\alpha}^{j} [(1 + R_{f,1}R_{g,1}) R_{\gamma}^{i} - R_{g,1}]) \tilde{T}^{2} \right]$$

$$\tau = \frac{-(1 - R_{\alpha}^{i})(1 - R_{\gamma}^{i}) + \sqrt{[(1 - R_{\alpha}^{i})(1 - R_{\gamma}^{i})]^{2} + 4R_{\alpha}^{j}R_{\gamma}^{i}(1 - R_{f,0}R_{\gamma}^{i})(1 - R_{\alpha}^{j}R_{f,0})\tilde{T}^{2}}{2R_{\alpha}^{j}R_{\gamma}^{i}\tilde{T}}$$

2nd Model Improvement: Computing Interface Reflectances

- Light incompletely diffuse in weakly scattering pigmented films
 - Incident sunlight ~20% diffuse
 - Incident spectrometer beam 0% diffuse
 - Weakly scattering films slowly diffuse collimated light
- Interface reflectance depends on diffuse fraction (ratio of diffuse flux to total flux)
- We extend K-M model to better estimate diffuse fractions and interface reflectances at film boundaries

Our 2nd Extension of K-M Model (Algorithm to Compute Interface Reflectances)

• Iterative solution couples diffuse fraction q and interface reflectance ω at each boundary to K, S

$$\begin{aligned} q_0^i &= 1 - i_c(0)/i(0) \\ q_{\delta}^j &= 1 - j_c(\delta)/j(\delta) \\ i(0) &= \tilde{T}/(1 - \omega_0^i) \\ j(\delta) &= (\tilde{R}_f - \omega_{\delta}^i)/(1 - \omega_{\delta}^j) \\ i_c(0) &= \tilde{T}_c/(1 - \omega_{c,0}^i) = \frac{(1 - \omega_{c,\delta}^i)\tau_c}{1 - \tau_c^2 \omega_{c,\delta}^j \omega_{c,0}^i} \\ j_c(\delta) &= (\tilde{R}_c - \omega_{c,\delta}^i)/(1 - \omega_{c,\delta}^j) = \frac{(1 - \omega_{c,\delta}^i)\omega_{c,0}^i \tau_c^2}{1 - \tau_c^2 \omega_{c,\delta}^j \omega_{c,0}^i} \\ \tau_c &= \exp\left\{-[K + (1 - \sigma)^{-1}S]\delta/\eta\right\} \end{aligned}$$

Summary of Our Improvements to Two-Flux K-M Model

- Kubelka-Munk theory extended to
 - Correct both film reflectance <u>and transmittance</u> for effects of interface reflectances
 - Estimate magnitudes of interface reflectances
- Retain compact radiative description of pigment using only two spectral parameters (*K*, *S*)
- Iteratively solve for absorption, scattering, diffuse fractions, interface reflectances
- About 1,500 lines of code

Our Process for Calculating Solar Spectral K and S

- Three inputs (measurements)
 - Free-film reflectance
 - Free-film transmittance
 - Reflectance of film with opaque black background
- Three outputs (calculations)
 - Absorption coefficient K
 - Backscattering coefficient S
 - Diffuse fraction q
- Validation of results
 - Compare predicted reflectance of film over opaque white background to measured value (not an input to model)

rrrr

1. Measure Free-Film Reflectance, Transmittance

Wavelength (nm)

- Chromium Green-Black Hematite Modified (Cool Black)
- **25-μm film with 7% pigment volume concentration**

Wavelength (nm)

2. Calculate K-M Coefficients (Absorption *K*, Backscattering *S*)

- Chromium Green-Black Hematite Modified (Cool Black)
 - 25-µm film with 7% pigment volume concentration

Wavelength (nm)

3. Compare Calculated, Measured Reflectances Over White, Black

- Chromium Green-Black Hematite Modified (Cool Black)
- 25-µm film with 7% pigment volume concentration

Wavelength (nm)

Computing Backscattering S: Our Model vs. Mie Theory

- Upper curve (gold) = our model
- Open circles = Mie theory for scattering by spheres, plus simple multiple scattering theory
 - 200-nm TiO₂ spheres, n=2.7
 - Transparent medium, *n*=1.5
- Agreement fair in visible range
- Experimental deficit in the NIR believed due to clumping of pigment particles

Wavelength (nm)

Part III

Identifying Cool, Hot Pigments

87 Pigmented Films Characterized

- Single-pigment films (most)
- Each film shown over white, then over black
- Palette
 - -4 white
 - 21 black/brown
 - 14 blue/purple
 - 11 green
 - 9 red/orange
 - 14 yellow
 - 14 pearlescent

Visualizing NIR Performance of Pigmented Films

- Cool, NIR-scattering pigments (*lower left*) suitable for any background
- Cool, NIR-transmitting pigments (*upper left*) need cool background
- Hot pigments (*right side*) to be avoided in cool coatings

Examples of **Cool** Pigments

- All are weak NIR absorbers
- <u>Strong NIR scatterers</u> (suitable for any substrate)
 - TiO₂ white
 - Nickel titanate and chrome titanate yellows
 - Mixed-metal oxide blacks $(Fe,Cr)_2O_3$, many related compounds
 - Co₂TiO₄ teal (bluish green)
 - TiO₂ on mica flakes various colors
- <u>Weak NIR scatterers</u> (need NIR-reflective substrate)
 - Cobalt chromite, cobalt aluminate, and ultramarine blues
 - Some iron oxide browns (burnt sienna, raw sienna)
 - Many organics (perylene black, phthalo blue, quinacridone red...)

38

Examples of Hot Pigments

- All are strong NIR absorbers
- Carbon black (also lamp black, ivory black)
- Fe₃O₄ black (magnetite)
- Copper chromite black
- Iron blue $KFe_2(CN)_6 \cdot H_20$

Two Articles for Journal of Applied Physics

- To be submitted pending internal review
- Radiative Model
 - Levinson, R., P. Berdahl, and H. Akbari. Spectral solar optical properties of pigments, Part I: Model for deriving scattering and absorption coefficients from transmittance and reflectance measurements
- Pigment Survey
 - Levinson, R., P. Berdahl, and H. Akbari. Spectral solar optical properties of pigments, Part II: Survey of common colorants

Pigment Database

- Details 87 pigmented films
- Solar spectral measurements, calculations
- Shared w/industrial partners
- To be used in our cool-color coating design software (under development)

Ongoing Research

- Characterize paint mixtures
 - Tints (color + white)
 - Nonwhite mixtures
 - Goal: develop accurate model that predicts reflectance of mixtures
- Develop cool-colored coating design software
 - Match color
 - Maximize solar reflectance
 - Use paint-mixture theory, pigment database

For More Information...

• Visit the Cool Colors website

http://CoolColors.LBL.gov

for copies of

- this presentation
- our pigment characterization papers
- related cool-colors research

