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3.1 White

All four whites were titanium dioxide (TiO2) rutile. Other white pigments (not characterized in
this study) include zinc oxide, zinc sulfide, antimony oxide, zirconium oxide, zirconium silicate
(zircon), and the anatase phase of TiO2.

TiO2 rutile is a strongly scattering, weakly absorbing, stable, inert, nontoxic, inexpensive, and
hence extremely popular white pigment [2]. TiO2 whites W01 - W04 exhibit similar curves of
strong backscattering and weak absorption in the visible and NIR, except for drops in backscattering
around 1500-2000 nm seen for W03 and W04. These last two samples are undiluted and 12:1 diluted
versions of the same artist color.

Of the available white pigments, the rutile phase of TiO2 has the highest refractive index in the
visible (about 2.7) and therefore has the strongest visible light scattering power at the optimum
particle size of about 0.2 µm. Its angle-weighted scattering coefficient s is estimated from the Mie
scattering theory to be about 12 µm−1 for the center of the visible spectrum at 550 nm, assuming
0.22 µm diameter particles suspended in a clear binder with refractive index 1.5 [8, 9]. Based on
the same method as [8], one of us [10, Fig. 1 and Eq. (1)] has obtained angle-weighted scattering
coefficient s ≈ 10.4 µm−1 at 550 nm, using slightly different values for the refractive index of TiO2.
Thus there is good general agreement among different authors on this basic result from the Mie
theory.

The question arises, what is the relation between the Mie theory result for s and the Kubelka-
Munk backscattering coefficient S? Palmer et al. [8] give an equation for the film reflectance of
a non-absorbing layer as R = (sfδ)/(2 + sfδ), where f is the pigment volume concentration and
δ is the film thickness. The corresponding Kubelka-Munk equation is R = Sδ/(1 + Sδ), which
suggests that S should be identified with 1

2fs. For clarification, we consider the special case of
isotropic scattering, and examine the limit of weak scattering. Then s is just the total scattering
cross section. In this limit the result of Palmer et al. is exact if the incident radiation is a normally
incident collimated beam; half the scattering is into the forward hemisphere, and half into the
backward hemisphere. However, we are more interested in the reflectance for completely diffuse
radiation, which is twice as large in this limit. Thus we identify S with fs. Superimposed on the
backscattering curves for samples W01 - W04 are additional Mie-theory estimates for backscattering
coefficient S as a function of wavelength, based on Ref. [10, Fig. 1 and Eq. (1)]. The measurements
and theoretical estimates are in reasonable, but not precise, agreement.

At the longer infrared wavelengths, the measured backscattering declines more slowly than
the theoretical values. (The theoretical values are approaching a Rayleigh regime in which S is
proportional to the inverse fourth power of wavelength.) A plausible reason is the clumping of
pigment particles. It is known that such clumping can raise the near-infrared reflectance [11].

Physically, the light scattering is due to the difference between the refractive index of the rutile
particles (2.7) and that of the surrounding transparent medium (1.5). At high pigment volume
concentrations, the presence of numerous nearby rutile particles raises the effective refractive index
of the surrounding medium, and thereby reduces the efficiency of scattering. This fall in scattering
efficiency is termed pigment crowding [12].

Rutile is a direct bandgap semiconductor and therefore has a very abrupt transition from
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low absorption to high absorption that occurs at 400 nm, the boundary between the visible and
ultraviolet regions. For wavelengths below 400 nm (photon energies above 3.1 eV), the absorption is
so strong that our data saturate, except in the case of the highly dilute (2% PVC) sample W04. At
wavelengths above 400 nm, absorption is weak; most of the spectral features may be attributed to
the binders used. One of the four white pigments (W01) does have a slightly less abrupt transition
at 400 nm—there is an absorption “tail” near the band edge. This type of behavior is likely due
to impurities in the TiO2.

The sharp rise in absorptance near 300 nm shown for some films such as W04 is an artifact due
to the use of a polyester substrate.
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