

Stephen Wiel, Project Director Energy Analysis Department Environmental Energy Technologies Division MS 90R2000 1 Cyclotron Road Berkeley, CA 94720-8136 Tel. 510-486-5396 Fax: 510-486-6996 e-mail: Swiel@lbl.gov

January 20, 2005

To:Chris Scruton (CEC)From:Steve WielSubject:Cool Roof Colored Materials: Quarterly Progress Report for Fourth Quarter 2004CC:Hashem Akbari, Paul Berdahl, Andre Desjarlais, Bill Miller, Ronnen Levinson

A summary of the status of Tasks and Deliverables as of December 31, 2004 is presented in Attachment 1. (Note the changes in the deliverables dates highlighted in yellow.)

### HIGHLIGHTS

- Task 2.4.1 Completed. Our two pigment papers are in press at *Solar Energy Materials & Solar Cells*; we have provided the final drafts of these papers to the Energy Commission.
- **Task 2.4.3 Completed**. We have submitted to the Energy Commission's Project Manager an HTML version of our pigment database.
- Task 2.5.1 Completed. Our revised report titled "Review of Roofing Materials Manufacturing Methods" was sent for publication in December 2004.
- Roof and attic temperature Data collected for the six demonstration homes in Cavalli Hills, CA and for the test samples at the Steep-slope Assembly Testing in TN continue to show the effectiveness of cool-colored roofing materials.
- We installed thermal monitoring instruments and connecting wiring on asphalt shingle roofs on a pair of residential homes in Redding, CA with and without cool-colored coatings.
- A paper titled "Experimental Analysis of the Natural Convection Effects Observed within the Closed Cavity of Tile Roofs" was submitted to a roofing symposium organized by the Roof Consultants Institute.
- The schedules of eight deliverables in Tasks 2.4, 2.5 and 2.6 were revised, leading to a one-year, no-cost extension of the final report to October 1, 2006.

- On October 27, 2004, LBNL hosted a Cool Roof Rating Council (CRRC)sponsored training course for measuring the optical properties of roofing materials.
- On October 14, 2004, at the Emerging Technologies in Energy Efficiency-Summit 2004, LBNL presented a seminar on development of cool colored roofing materials.

### Tasks

- 1.1 <u>Attend Kick-Off Meeting</u> This Task is completed.
- 1.2 Describe Synergistic Projects This Task is completed.
- 2.1 <u>Establish the Project Advisory Committee (PAC)</u> **This Task is completed.**
- 2.2 <u>Software Standardization</u> (No activity.)
- 2.3 <u>PAC Meetings</u> (No activity.)
- 2.4 <u>Development of Cool Colored Coatings</u>
- 2.4.1 Identify and Characterize Pigments with High Solar Reflectance Task Completed. Our pair of pigment-characterization papers, "Solar Spectral Optical Properties of Pigments, Part I: Model for Deriving Scattering and Absorption Coefficients from Transmittance and Reflectance Measurements" and "Solar Spectral Optical Properties of Pigments, Part II: Survey of Common Colorants" were accepted without revision for publication in *Solar Energy Materials & Solar Cells*. The papers are currently in press; we have provided the final drafts of these papers to the Commission.
- 2.4.2 <u>Develop a Computer Program for Optimal Design of Cool Coatings</u> We continue to improve the mixture model on which our coating formulation software is based, and to develop the optimization algorithm.
- 2.4.3 <u>Develop a Database of Cool-Colored Pigments</u> **Task Completed**. We prepared and submitted to the CEC an HTML version of our pigment database that augments measured and computed solar spectral radiative properties with images of pigmented coatings, performance data from manufacturers, and technical commentary derived from our pigment papers. The database contains all pigment characteristics data measured through November 2004.
- 2.5 Development of Prototype Cool-Colored Roofing Materials
- 2.5.1 <u>Review of Roofing Materials Manufacturing Methods</u> Task Completed. The revised paper was distributed to the Industry Partners at the September PAC meeting. We received reviewers' comments, updated the report and sent it for publication in December 2004.

Western Roofing Magazine has reviewed the report and is interested in publishing it.

2.5.2 <u>Design Innovative Methods for Application of Cool Coatings to Roofing Materials</u> We continued working with manufacturers to develop cool shingle prototypes.

We characterized the reflectance of a number of new shingle prototypes.

We developed an Excel workbook that implements a Monte Carlo (random sampling) technique to measure the solar reflectance of a non-uniform surface (e.g., a blended roofing shingle) through a series of ASTM C1549 (reflectometer) spot measurements of solar reflectance. We have shared the algorithm, procedure, and workbook with the Cool Roof Rating Council, and also with attendees of our October LBNL/CRRC workshop on the measurement of solar reflectance and thermal emittance.

We have completed and sent for internal review a draft paper describing a new technique ("E1918M", a proposed modification to the existing ASTM E1918 test method) for measuring solar reflectance via a series of three pyranometer measurements of reflected solar radiation. The target area required by E1918M (1 m<sup>2</sup>) is an order of magnitude smaller than that required by ASTM E1918 (10 m<sup>2</sup>), making E1918M more convenient to apply to roofing product samples.

2.5.3 Accelerated Weathering Testing

We are collecting references and assembling a bibliography on the topic of accelerated aging. Besides journal articles, we are using pigment and materials manufacturers' product data, and several ASTM standards. Some companies find accelerated aging to be very important (e.g., metal roof coating manufacturers), while others state that it is not useful for their products (e.g., concrete pavers).

An outline of the Accelerated Weathering Testing Report is being formulated, along with a brief bibliography. The subject is color stability and material integrity after accelerated weathering tests. This information will be sent to our industrial partners in December with a request for further references and supplementary information, to fill in the gaps in the information currently on hand. Requests were made of MonierLifetile, Hanson Roof tile and American Roof Tile coatings for accelerated QUV data. Similar requests were made of the Cedar Shake Bureau, Ferro Corporation and BASF. Granule manufacturers at 3M and ISP were also contacted for pertinent information that would prove the positive benefits of cool roofing materials.

### 2.6 Field-Testing and Product Useful Life Testing

Two custom-built homes being built by Jerry Wagar of Ohoa and Shehan Inc. (Redding, Calif.) were selected for demonstrating asphalt shingle roofs with and without CRCMs. A Memorandum of Understanding was reviewed and approved by Ohoa and Shehan Inc. and ORNL for the proposed work demonstrating asphalt shingle roofing (Attachment 2). Wagar agreed to fully support the project and helped ORNL with the setup of instruments, phone lines and instrument wiring for the pair of homes. The MOU calls for a representative of the shingle manufacturer to retrieve at least one and possibly three shingles per year from each home. ORNL requested that the shingle manufacturer conduct mechanical tests to bench mark data for the shingles with cool colored pigments to judge within the time of exposure whether they perform as well as their standard production shingles. Wagar stated that Redding's summer air temperatures often exceed 100°F, while winter temperatures can drop below 32°F. Therefore it will be of keen

interest to access the effect of heat aging on the shingles with and without cool-colored pigments.

### 2.6.1 <u>Building Energy-Use Measurements at California Demonstration Sites</u>

Asphalt Shingle Demonstration at Redding Calif.: Jerry Wagar of Ochoa and Shehan Inc. estimates that the pair of demonstration homes will be finished in February, at which time, ORNL personnel will complete setup of the monitoring equipment. Wagar placed the homes on two different street cul-de-sacs so that both homes would have the same roof orientation. The ranch style homes each have about 2400 square feet of floor space, and are equipped with two split system air-conditioning units for comfort cooling. Figure 1 shows the homes under construction with the shingles being installed during the first week of December.



Figure 1. The pair of homes in Redding CA for demonstrating asphalt shingles with and without cool-colored coatings.

The type and scheme of measurements for the Redding site are very similar to the setups used at Cavalli Hills. However, in addition to the surface and deck temperatures, the underside temperature of a shingle is included to view the temperature gradient across a shingle as well as the gradient across the overlap of two shingles on the east- and west-facing roofs. The heat transfer crossing the direct nailed shingles, the heat transfer crossing the ceiling of each home, and the whole house and air-conditioning power measurements will be collected for assessing benefits of cool-colored roofing materials on the home's utility charges (see Attachment 2, Table A1 and A2 showing the setup of measurements for the new demonstrations).

*Tile and Painted Metal Demonstration at Fair Oaks, Calif.*: Whole house power measurements from the transducers supplied by SMUD were checked against readings from the revenue meters monitoring power for each of the demonstration homes at Cavalli Hills. The revenue meter and the Rochester Series PM-100 watthour meters gave similar measurements for three of the four homes for data collected from Oct 17 through Nov 15, 2004 (Table 1).

| Table 1. Cor           | nparisor   | n of Wh    | ole House Po      | ower Meters       | in Use at Ca      | valli Hills.      |
|------------------------|------------|------------|-------------------|-------------------|-------------------|-------------------|
|                        | D          | ate        |                   | House an          | d Address         |                   |
| SMUD Meters            | Date       |            | 1                 | 2                 | 3                 | 4                 |
|                        | From       | To         | 4979 Mariah Place | 4983 Mariah Place | 4987 Mariah Place | 4991 Mariah Place |
| Revenue Meter (kWh)    | 10/17/2004 | 11/15/2004 | 361               | 489               | 633               | 116               |
| Pulse Transducer (kWh) | 10/17/2004 | 11/15/2004 | 4171              | 486               | 623               | 116               |
| Error (%)              | 10/17/2004 | 11/15/2004 | 1055.50           | 0.59              | 1.62              | 0.13              |

The error is about 1.5% of reading of the revenue meters. House 1 showed huge error because the revenue meter was defective during the measurement period. Since then, Wim Boss of SMUD replaced the revenue meter at 4979 Mariah Place and the watthour transducer measurement was within 5% of the new revenue meter for measures acquired from 11/16 through 12/16/04. Boss plans to visit the site and make preventative maintenance type checks of the power instrumentation.

Cedar Shake Developments: Testing is proceeding for determining whether cool colored pigments can be successfully applied to cedar shakes during the process of adding fire retardants. FERRO Corporation shipped about 30 lbs of cool colored pigments to Steve Harris of the Cedar Shake Bureau for determining the effect of cool colored pigments on the fire resistance of cedar shakes.

- 2.6.2 <u>Materials Testing at Weathering Farms in California</u> Test samples are sitting unattended accumulating exposure time.
- 2.6.3 Steep-slope Assembly Testing at ORNL

*ORNL Field Data*: Surface temperature data collected from November 5 to 12, 2004 are plotted in Figure 2 for a brown slate tile (SR13E83),<sup>1</sup> a prototype cool-colored asphalt shingle (SR24E95) and also a standard production shingle (SR09E95) all being exposed on the steep-slope attic assembly at ORNL.

Peak surface temperatures of the shingle with cool-colored coatings are about 15 to 20°F cooler than those measured for the standard production shingle. The prototype shingle does not quite meet the 0.25 reflectance criterion for steep-slope roofs; however, the 15 to 20°F reduction in temperature is very encouraging because the reduced temperature will reduce changes in the chemical and flexural properties of the shingles as compared to existing shingle technology on the open market. During this November week, the sunlit outdoor ambient temperature did not exceed 70°F and the evening lows were about 35 to 40°F. We have measured summertime surface temperatures for the standard production shingle in excess of 150°F. It will be of keen interest to observe the temperature differences on the demonstrations in Redding, CA especially since the summer air temperatures can exceed 100°F.

It is also very interesting to compare the almost identical nighttime surface temperatures for the two shingle products with the surface temperature of the concrete slate tile placed on counter-battens (e.g., Fig. 2). The nighttime surface temperature of the concrete tile is higher than either shingle due in part to the tile's lower thermal emittance, its higher

<sup>&</sup>lt;sup>1</sup> "SRxx" states the solar reflectance; "Eyy" specifies the thermal emittance.

thermal mass and possibly due to the air gap occurring in its batten support structure. The higher surface temperature causes the attic temperature for the tile roof assembly to be about 5°F warmer than that of the direct nailed shingle attic assemblies, which in turn reduces the heat leakage from the conditioned space into the tile's attic assembly as compared to the shingle assemblies. The portions of reduced heat leakage attributable to thermal emittance, thermal mass and deck venting are to be investigated using AtticSim once the code is validated against the tile roof systems.

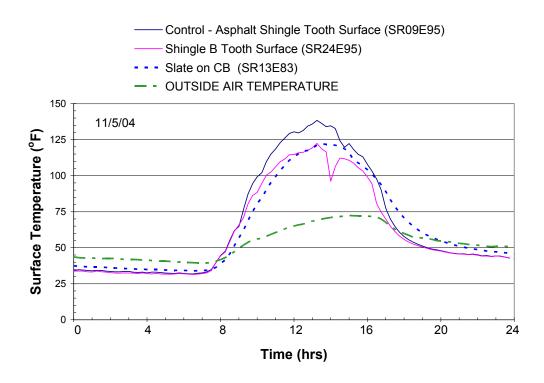



Figure 2. Surface temperatures measured on the steep-slope attic assembly at ORNL

*Attic Simulation*: Our validation work reported the previous quarter showed that AtticSim did an excellent job of predicting the ceiling heat flux penetrating the attic assembly with a standard production direct nailed shingle roof. The code requires additional formulation to predict the heat transfer in tile roofs having thermal mass and a venting evident on the underside of the tile. The challenge is to accurately predict the airflow within the inclined air cavity.

Temperatures of the deck, on the attic side, and of the bulk air within the inclined air cavity were measured in the clay tile (SR54E90) roof system to better understand the physics of the problem and help formulate a procedure for predicting the airflow and in turn the heat transfer. An energy balance for the inclined air cavity of width W shows that the energy supplied to the air from the roof less the energy absorbed by the deck equate to the temperature gradient of the bulk air as it traverses from soffit to ridge. This energy balance takes the form:

$$\left(\frac{dT_{\rm B}}{dX}\right)_{\rm air} = \frac{W}{\left(\dot{m}C_{\rm P}\right)_{\rm air}} \left(q_{\rm Roof}'' - q_{\rm Deck}''\right)$$

and assumes that axial conduction in the air is negligible. Integrating the energy balance over the length of the roof yields the heat convected away by buoyancy and wind forces within the inclined air channel; it being equal to:

$$\dot{Q}_{\text{Vent}} = \dot{m}C_{P}\left(T_{\text{Ex Ridge}} - T_{\text{in Soffitt}}\right) = \frac{W \cdot L}{\left(\dot{m}C_{P}\right)_{\text{air}}}\left(q_{\text{Roof}}'' - q_{\text{Deck}}''\right)$$

The bulk air and deck temperature data for the clay tile roof are plotted in Figure 3 for measurements collected at 8 am and also near solar noon around 2 pm. The temperature

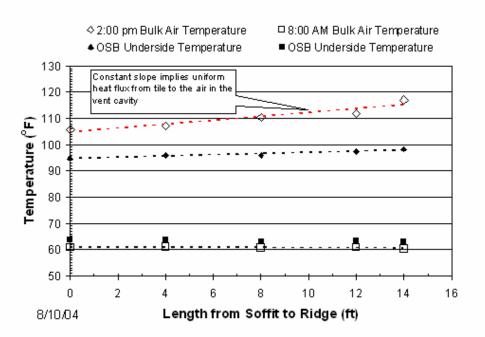



Figure 3. Bulk air and deck temperature measured in the inclined air channel of the clay tile roof.

data measured at solar noon (2 pm) is very interesting because it shows that the gradient of the bulk air temperature is linear with length along the sloped roof. In other words, the slope is constant and therefore the net heat flux across the air channel is constant. This in turn infers that the airflow did not leak out from between the overlapped clay tiles.

Anderson and Bejan (1980) studied the situation of an exterior building wall separating two fluid chambers of air at different temperatures. They observed that the temperature of the wall "floats" such that it increased in temperature with increasing altitude and the heat flux through the wall was essentially uniform. The deck temperatures in Figure 3 behave in similar fashion. The inference that the air moving up the inclined channel is conserved and does not leak out between the overlapped tiles even though tile roofs are specifically designed to be porous was also observed by Geert Houvenaghel of the Katholieke University, Leuven. Houvenaghel measured the airflow in the inclined cavity using a sulfur-hexafluoride tracer gas. His data confirms the observations for tile roofs observed by ORNL provided the strength of wind sweeping the tile is relatively low. The uniform and constant roof heat flux concept can therefore be used in an iterative manner to predict the bulk air temperature, the airflow and the heat flow occurring in the inclined air gap.

Derivation of the governing equations are not provided but are stated to show the approach to be tried for modeling tile roof systems. The inclined air channel has length L and hydraulic diameter D. Equating the flow resistances of friction and hydraulic losses to the pressure driving forces of buoyancy and wind a pressure balance is formed:

$$\underbrace{\Delta P_{h}}_{\text{hydraulic losses}} + \underbrace{\Delta P_{f}}_{\text{friction}} = \underbrace{\Delta P_{B}}_{\text{buoyancy}} + \underbrace{\Delta P_{W}}_{\text{Wind}}$$

Using energy, continuity and force balances for fully developed incompressible flow and invoking the Boussinesq approximation, yields expressions for each of the above terms, and after rearranging yields the following expression:

$$A(L^{+})^{3} + B(L^{+})^{2} - 0.5[(f_{app} Re_{D})L^{+} + \sum K_{h}] = 0$$

where

$$A = 2SSIN(\theta) \frac{Ga_{D}}{Pr}$$
$$B = \frac{\Delta P_{Wind} D_{h}^{4}}{\rho v^{2} L^{2}}$$
$$L^{+} = \frac{L}{D_{h} (Re_{D})}$$
$$Ga_{D} = \left(\frac{g\beta}{v^{2}}\right) \frac{\dot{q}_{vent} D_{h}^{5}}{L \cdot k}$$
$$Re_{D} = \frac{UD_{h}}{v}$$

The formulation can be solved for the mass flow of air given a reasonable estimate for  $\dot{q}_{vent}$  using a Newton-Raphson procedure to iterate on the mass flow rate of air. The heat transfer coefficients for natural and mixed convection are calculated and reevaluated until the approach converges on both  $\dot{q}_{vent}$  and  $\dot{m}_{air}$ . Bejan(1984) provides a useful table of heat transfer correlations for the case where the heat transfer leaks from the attic and out through the roof surface. Brinkwork (2000) has conducted an extensive validation for the case where the heat transfers from the tile surface, through the inclined air channel and on into the attic. The algorithm and correlations shall be implemented in the computer simulation code AtticSim, and efforts will continue to formulate and validate AtticSim for concrete tile roofs.

Bejan A. 1984. Convection Heat Transfer. John Wiley & Sons, Inc., New York.

Brinkworth, B.J. 2000. "A procedure for the routine calculation of laminar free and mixed convection in inclined ducts." International Journal of Heat and Fluid Flow, v 21, p. 456-462.

Houvenaghel, G., Katholieke University, Leuven. Houvenaghel, personnel communication.

2.6.4 Product Useful Life Testing

We are reviewing the ASTM literature on standards for asphalt shingles. We are also interviewing industry experts to obtain their opinions as to the best test procedures. There is no industry consensus on accelerated aging tests, for example. Information posted on the ARMA website is helpful in summarizing the overall situation. One industry standard, D3462, is widely used and consists of a number of tests, including tear strength. (Other tests incorporated include softening point of asphalt used, minimum weight, weight loss under heating, fire resistance (Class A), wind resistance (Class A), fastener pull through resistance, and pliability.) To quote from the ARMA website: "The ARMA maintains that tensile strength, tensile elongation, and shingle flexibility are better indicators of potential resistance to shingle splitting than tear strength... ARMA maintains that some shingles that don't meet D3462 perform adequately."

Tentative agreement was made with the manufacturer of the asphalt shingles being field tested in Redding Calif. to periodically visit the demonstration site and remove a couple shingles from each home and conduct chemical and mechanical analysis. Further negotiations are required to scope out the type of testing. ORNL is asking the manufacturer to conduct Corbett fractionation and gel chromatography (or equivalent) procedures to judge the chemical and flexural properties of the shingles with CRCMs as compared to the standard production shingle being field tested. Terrenzio et al. (2002) showed that heating of asphalt shingles promotes the diffusion and vaporization of oils from the asphalt with the subsequent migration of oxygen into the asphalt. Terrenzio noted that as aging progresses, the stiffness of the asphalt increases. The Corbett fractionation and gel chromatography testing of the exposed shingles will hopefully show the benefit of the shingle with cool-colored pigments because it will incur less heat aging (especially in Redding, CA where summer air temperatures can exceed 100°F) as compared to the standard production shingle being exposed on the control house.

Trrenzio L.A., Harrison J.W., Nester D.A.and Shiao, M.L. 2002. "Natural vs artificial aging: Use of diffusion theory to model asphalt and fiberglass-reinforced shingle performance." Proceedings of the 4<sup>th</sup> International Symposium on Roofing Technology, v 66.

### 2.7 <u>Technology transfer and market plan</u>

### 2.7.1 Technology Transfer

A paper was prepared and submitted in response to the roofing symposium call for papers announced by the Roof Consultants Institute. The paper "Experimental Analysis of the Natural Convection Effects Observed within the Closed Cavity of Tile Roofs" will be presented May 12, 2005 pending review input by the Cool Team and by RCI's outside peer review.

On October 27, 2004, LBNL hosted a Cool Roof Rating Council (CRRC)-sponsored training course for measuring optical properties of roofing materials.

On October 14, 2004, at the Emerging Technologies in Energy Efficiency-Summit 2004, Akbari presented a seminar on development of cool colored roofing materials.

### 2.7.2 <u>Market Plan</u> (No activity.)

2.7.3 <u>Title 24 Code Revisions</u> Akbari continued working with PG&E and Energy Commission to develop a plan for code change proposal for sloped-roof residential buildings.

### **Management Issues**

• Scruton and Akbari fine-tuned the schedules of project tasks and deliverables. The schedules of eight deliverables in Tasks 2.4, 2.5 and 2.6 were revised, leading to a one-year, no-cost extension of the final report to October 1, 2006.

| 5        |  |
|----------|--|
| 200      |  |
| <u> </u> |  |
| 20       |  |
| January  |  |

# Attachment 1

# Project Tasks and Schedules (Approved on May 16, 2002; Revised schedules approved November 2004)

| Task | Task Title and Deliverables                                                      | Plan<br>Start<br>Date | Actual<br>Start<br>Date | Plan<br>Finish<br>Date | Actual<br>Finish<br>Date | % Completion<br>as of<br>12/31/2004 |
|------|----------------------------------------------------------------------------------|-----------------------|-------------------------|------------------------|--------------------------|-------------------------------------|
| 1    | Preliminary Activities                                                           |                       |                         |                        |                          |                                     |
| 1.1  | Attend Kick Off Meeting                                                          | 5/16/02               | 5/16/02                 | 6/1/02                 | 6/10/02                  | 100%                                |
|      | Deliverables:                                                                    |                       |                         |                        |                          |                                     |
|      | Written documentation of meeting agreements and all pertinent                    |                       |                         |                        |                          |                                     |
|      | information (Completed)                                                          |                       |                         |                        |                          |                                     |
|      | Initial schedule for the Project Advisory Committee meetings                     |                       |                         |                        |                          |                                     |
|      | (Completed)                                                                      |                       |                         |                        |                          |                                     |
|      | Initial schedule for the Critical Project Reviews (Completed)                    |                       |                         |                        |                          |                                     |
| 1.2  | Describe Synergistic Projects                                                    | 5/1/02                | 2/1/02                  | 5/1/02                 | 5/1/02                   | 100%                                |
|      | Deliverables:                                                                    |                       |                         |                        |                          |                                     |
|      | A list of relevant on-going projects at LBNL and ORNL (Completed)                |                       |                         |                        |                          |                                     |
| 1.3  | Identify Required Permits                                                        | N/A                   |                         | N/A                    |                          |                                     |
| 1.4  | Obtain Required Permits                                                          | N/A                   |                         | N/A                    |                          |                                     |
| 1.5  | Prepare Production Readiness Plan                                                | N/A                   |                         | N/A                    |                          |                                     |
| 2    | Technical Tasks                                                                  |                       |                         |                        |                          |                                     |
| 2.1  | Establish the project advisory committee                                         | 6/1/02                | 5/17/02                 | 9/1/02                 |                          | 100%                                |
|      | Deliverables:                                                                    |                       |                         |                        |                          |                                     |
|      | Proposed Initial PAC Organization Membership List (Completed)                    |                       |                         |                        |                          |                                     |
|      | Final Initial PAC Organization Membership List                                   |                       |                         |                        |                          |                                     |
|      | PAC Meeting Schedule (Completed)                                                 |                       |                         |                        |                          |                                     |
|      | Letters of Acceptance                                                            |                       |                         |                        |                          |                                     |
| 2.2  | Software standardization                                                         | N/A                   |                         | N/A                    |                          |                                     |
|      | Deliverables:                                                                    |                       |                         |                        |                          |                                     |
|      | When applicable, all reports will include additional file formats that will      |                       |                         |                        |                          |                                     |
|      | be necessary to transfer deliverables to the CEC                                 |                       |                         |                        |                          |                                     |
|      | When applicable, all reports will include lists of the computer platforms,       |                       |                         |                        |                          |                                     |
|      | operating systems and software required to review upcoming software deliverables |                       |                         |                        |                          |                                     |
|      |                                                                                  |                       |                         |                        |                          |                                     |

| 5  |  |
|----|--|
| 2  |  |
| 50 |  |
|    |  |
| Ó  |  |
| ล  |  |
| >  |  |
| Ŀ  |  |
| 13 |  |
| 5  |  |
| at |  |
| ſ  |  |

| (contd.)  |
|-----------|
| Schedules |
| and       |
| Tasks     |

| <ul> <li>2.3 PAC meetings</li> <li>2.3 PAC meetings</li> <li><i>Deliverables:</i></li> <li>Tinal PAC meeting agend</li> <li>Final PAC meeting agend</li> <li>Final PAC meeting agend</li> <li>Schedule of Critical Proje</li> <li>Final PAC Meeting Summ</li> <li>Schedule of Critical Proje</li> <li>2.4.1 Development of cool colored</li> <li>2.4.1 Development of cool colored</li> <li>2.4.1 Develop and Characterize Pign</li> <li>Deliverables:</li> <li>Pigment Characterize Pign</li> <li>2.4.3 Develop a Computer Program</li> <li>2.4.3 Develop a Computer Program</li> <li>2.4.3 Develop a Database of Cool-C</li> <li>2.4.3 Develop a Database of Cool-C</li> <li>2.5.1 Develop a Database of Cool-C</li> <li>Deliverables:</li> <li>Electronic-format Pigmen</li> <li>2.5.2 Development of prototype coo</li> <li>2.5.2 Development of Rabrication ar</li> <li>2.5.2 Development of Fabrication ar</li> <li>2.5.2 Development of Prototype coo</li> <li>2.5.3 Development of Prototype coo</li> <li>2.5.4 Development of Prototype coo</li> <li>2.5.5 Development of Prototype coo</li> </ul> | I back-up materials for agenda items<br>I back-up materials for agenda items<br>ws Draft PAC Meeting Summaries | 9/1/02  | Date    | Date                     | Date | as of<br>12/31/2004 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------|---------|--------------------------|------|---------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ı back-up<br>ı back-up<br>ws Draft 1                                                                           |         | 6/1/02  | 6/1/05                   |      | 83% (5/6)           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ı back-up<br>ws Draft ]                                                                                        |         |         |                          |      |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ws Draft I                                                                                                     |         |         |                          |      |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                |         |         |                          |      |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Development of cool colored coatings                                                                           |         |         |                          |      |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Identify and Characterize Pigments with High Solar Reflectance                                                 | 6/1/02  | 6/1/02  | 12/1/04                  |      | $\%66 \sim$         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                |         |         | 个<br>(                   |      |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>Pigment Characterization Data Report (Completed)</li> </ul>                                           |         |         | 12/31/04                 |      |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Develop a Computer Program for Optimal Design of Cool Coatings                                                 | 11/1/03 | 11/1/03 | $\frac{12/1/04}{5/1/05}$ |      | $\sim 85\%$         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Program                                                                                                        |         |         |                          |      |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cool-Colored Pigments                                                                                          | 6/1/03  | 7/1/03  | 6/1/02 →                 |      | ~ 95%               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IVerables:<br>Flootronio-format Diamant Datahasa (Comulatad)                                                   |         |         | 12/31/04                 |      |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Development of prototype cool-colored roofing materials                                                        |         |         |                          |      |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ethods                                                                                                         | 6/1/02  | 6/1/02  | 6/1/03                   |      | ~ 66%               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Methods of Fabrication and Coloring Report (Completed)                                                         |         |         |                          |      |                     |
| Materials<br>Deliverables:<br>• Summary Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | o Roofing                                                                                                      | 6/1/02  | 6/1/02  | 12/1/04                  |      | $\%06 \sim$         |
| Summary Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                |         |         | → 5/1/05                 |      |                     |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Coating Report                                                                                                 |         |         |                          |      |                     |
| Prototype Pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Prototype Performance Report                                                                                   |         |         |                          |      |                     |
| 2.5.3 Accelerated Wea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Accelerated Weathering Testing                                                                                 | 11/1/02 | 10/1/02 | $6/1/05 \rightarrow$     |      | $\sim 30\%$         |
| Accelerated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Accelerated Weathering Testing Report                                                                          |         |         |                          |      |                     |

| S       |
|---------|
| 0       |
| 0       |
| 2       |
|         |
| $\circ$ |
| 3       |
| January |

| / |              | - | • |
|---|--------------|---|---|
| - | c            | š |   |
| 1 |              | 2 |   |
|   |              | 2 |   |
|   | 2            | 2 |   |
|   | -            | - | / |
|   | U            | 2 |   |
|   | ٩            | 2 |   |
|   | Ξ            | 5 |   |
|   | Ċ            | 5 |   |
|   | ٩            | ) |   |
| - | -            | í |   |
| - | 2            | 5 |   |
| 4 |              | 1 |   |
|   | C            | 5 |   |
|   | <b>9 n c</b> |   |   |
|   | 5            | 3 |   |
|   | ø            | 3 |   |
| - | ĥ            | 1 |   |
|   | 5            | ŝ |   |
| E | •            |   |   |
| • | Ŀ            | 2 |   |
|   |              | 2 |   |
| • | Ì            |   |   |
|   | ç            | 2 | Ĩ |
|   | È            | 1 |   |
| F | 1            |   |   |

| Task  | Task Title                                                                                     | Plan          | Actual        | Plan           | Actual         | % Completion        |
|-------|------------------------------------------------------------------------------------------------|---------------|---------------|----------------|----------------|---------------------|
|       |                                                                                                | Start<br>Date | Start<br>Date | Finish<br>Date | Finish<br>Date | as of<br>12/31/2004 |
| 2.6   | Field-testing and product useful life testing                                                  |               |               |                |                |                     |
| 2.6.1 | Building Energy-Use Measurements at California Demonstration Sites<br>Deliverables:            | 6/1/02        | 9/1/02        | 10/1/05<br>→   |                | 84%                 |
|       | Demonstration Site Test Plan                                                                   |               |               | 10/1/06        |                |                     |
|       | Test Site Report                                                                               |               |               |                |                |                     |
| 2.6.2 | Materials Testing at Weathering Farms in California<br>Deliverables:                           | 6/1/02        | 10/1/02       | 10/1/05<br>→   |                | 65%                 |
|       | Weathering Studies Report                                                                      |               |               | 10/1/06        |                |                     |
| 2.6.3 | Steep-slope Assembly Testing at ORNL<br>Deliverables:                                          | 6/1/02        | 10/1/02       | 10/1/05        |                | 70%                 |
|       | Whole-Building Energy Model Validation                                                         |               |               |                |                |                     |
|       | Presentation at the Pacific Coast Builders Conference                                          |               |               |                |                |                     |
|       | Steep Slope Assembly Test Report                                                               |               |               |                |                |                     |
| 2.6.4 | Product Useful Life Testing                                                                    | 5/1/04        | 5/1/04        | 6/1/05         |                | 30%                 |
|       | Deliverables:                                                                                  |               |               | <u>ተ</u>       |                |                     |
|       | Solar Reflectance Test Report                                                                  |               |               | 10/1/05        |                |                     |
| 2.7   | Technology transfer and market plan                                                            |               |               |                |                |                     |
| 2.7.1 | Technology Transfer<br>Deliverables:                                                           | 6/1/03        | 6/1/02        | 6/1/05         |                | $\sim 80\%$         |
|       | Publication of results in industry magazines and refereed journal articles                     |               |               |                |                |                     |
|       | Participation in buildings products exhibition, such as the PCBC Brochure                      |               |               |                |                |                     |
|       | summarizing research results and characterizing the benefits of cool colored roofing materials |               |               |                |                |                     |
| 2.7.2 | Market Plan                                                                                    | 5/1/05        |               | 6/1/05         |                |                     |
|       | Market Plan(s)     Market Plan(s)                                                              |               |               |                |                |                     |
| 2.7.3 | Title 24 Code Revisions<br>Deliverables:                                                       | 6/1/02        | 5/16/02       | 6/1/05         |                | $\sim 30\%$         |
|       | Document coordination with Cool Roofs Rating Council in monthly progress reports               |               |               |                |                |                     |
|       | • I Itle 24 Database                                                                           |               |               |                |                |                     |

| S  |
|----|
| 0  |
| 0  |
| 2  |
|    |
| 0  |
| ă  |
| 5  |
| Ľ. |
| 5  |
| Ц  |
| E  |
| B  |
| Ľ, |

| (contd.)         |
|------------------|
| ıles             |
| l Schedı         |
| <b>Fasks and</b> |
| 5                |
| roject           |

| Task    | Task Title                 | Plan     | Actual | Plan     | Actual | % Completion |
|---------|----------------------------|----------|--------|----------|--------|--------------|
|         |                            |          | Start  | Finish   | Finish | as of        |
|         |                            |          | Date   | Date     | Date   | 12/31/2004   |
| IIV     | Critical Project Review(s) |          |        |          |        |              |
|         | Deliverables:              |          |        |          |        |              |
|         | Minutes of the CPR meeting |          |        |          |        |              |
| IIX     | Monthly Progress Reports   | 6/1/02   | 6/1/02 | 6/1/05   |        | 78% (28/36)  |
| C       | Deliverables:              |          |        |          |        |              |
|         | Monthly Progress Reports   |          |        |          |        |              |
| IIX     | Final Report               | 3/1/05 → |        | 10/1/05  |        |              |
| <u></u> | Deliverables:              | 3/31/05  |        | 1        |        |              |
|         | Final Report Outline       |          |        | 10/1/06  |        |              |
|         | Final Report               |          |        |          |        |              |
|         | Final Meeting              | 10/15/05 |        | 10/31/05 |        |              |
|         | Deliverables:              |          |        |          |        |              |
|         | Minutes of the CPR meeting |          |        |          |        |              |
|         |                            |          |        |          |        |              |

### Attachment 2

### Memorandum of Understanding

### Demonstration of Standard Production Asphalt Shingles and Advanced Shingles having Cool Roof Color Materials on Homes in Redding, CA

This Memorandum of Understanding represents an agreement by Oak Ridge National Laboratory (ORNL), the Elk Group Inc. and Ochoa and Shehan Inc, a residential construction firm in Redding, CA to cooperate in the field testing and demonstration of cool roof colored materials (CRCM).

Whereas, the California Energy Commission (CEC) has contracted the Lawrence Berkeley National Laboratory (LBNL) and the Oak Ridge National Laboratory (ORNL) to develop cool roof colored materials (CRCM) that are visibly dark but can reflect light like a "white" roof in the infrared portion of the solar energy spectrum.

LBNL and ORNL are working with the tile, metal, cedar shake and asphalt-shingle roofing industries to accomplish the CEC goal of making CRCM a market reality for all residential roof products within the next five years.

Whereas, the CEC's objectives are 1) to offer consumers information that promotes the development and increased use of highly reflective CRCM and 2) to develop colored composition shingles with solar reflectance of at least 25% and tile and metal materials with reflectance of 50% or more.

Whereas, the Building Envelope Group of the ORNL intends, with support from the Elk Group Inc. and the cooperation of Ochoa and Shehan Construction to set up in November 2004 two residential demonstrations consisting of a pair of single-family detached homes that have composition shingle roofs with and without cool roof color materials.

Whereas, Elk is providing asphalt shingles at no cost for Ochoa and Shehan Construction to install on two homes in Redding CA in exchange for acquiring temperature, heat flow and power measurements for the two homes over the course of a two year field study.

ORNL personnel will instrument the two homes during construction slated for November 2004, and will monitor the homes over a two-year period ending October 2006.

Whereas, Table 1 lists all the instrument measurements currently proposed by ORNL and Elk

Therefore, the parties agree to undertake the activities described below or otherwise agreed in writing during the course of the demonstration project:

### **Demonstration Homes**

1. Ochoa and Shehan Construction will make two demonstration houses available in 2004 for the field testing demonstrations described below.

### **Instrumentation for each Home**

2. ORNL personnel shall make 2-ft by 2-ft sandwich test panels of the same material as used for the roof decks at the demonstration homes, probably oriented strand board (OSB). Each sandwich panel will be made of two sections equaling the same thickness as the rest of the deck. The two panels will sandwich thermocouples and a heat flux transducer for measuring thermal performance of the roofs. A spare thermocouple will be included for possibly measuring the surface temperature of the shingle roofs.

3. Ochoa and Shehan Construction will notify ORNL of the start date for constructing the roof decks, and ORNL shall ship sandwich test panels to Ochoa and Shehan Construction prior to the specified start date.

4. ORNL will contract Ochoa and Shehan Construction to install the sandwich test panels as part of the deck for the test roofs. The orientation of the homes makes it necessary to use two panels per house.

The roofing contractor will center and attach one panel to preferably a south-facing roof and center and attach the other to preferably the north-facing roof.

5. ORNL personnel under the supervision of Ochoa and Shehan Construction shall instrument the attic for measuring the attic air temperature and relative humidity and the temperatures around the ceiling insulation as well as the ceiling heat flux. A temperature and relative humidity probe will be mounted in the return duct to measure the return air temperature and relative humidity from the house (see Table 1 for a listing of measurements).

6. ORNL personnel under the supervision of Ochoa and Shehan Construction will install two Model WNA-1P-240-P Wattnode transducers for measuring the whole house power consumption and the power draw of the HVAC system. The meters shall be housed in weatherproof NEMA enclosures and placed on an exterior wall near the power panel for each home. An event counter (Campbell Scientific model ACL1) shall be installed in the condensing unit of the air-conditioner for measuring its cycling rate.

7. ORNL personnel shall install two pyranometers, one on the south facing roof and the other on the north facing roof of each house in an inconspicuous place near the roof ridge. The instruments have about a 3-in diameter and stand about 2-in off the roof. Instrument wires will be hidden by running them through the ridge or louvered vents into the attic and down inside an exterior wall to a data acquisition system (DAS) housed in a white plastic NEMA enclosure.

### **Data Acquisition System**

8. ORNL personnel under the supervision of Ochoa and Shehan Construction shall install a data acquisition system an exterior wall of each house (near the power panel) and shall make all instrument connections to the DAS. Placement of the DAS in the attic is not encouraged because problems do occur even with the best DAS and placement on an exterior wall near the power panel would cause the least hassle for the technician and the least intrusion for the homeowner.

We will use a Campbell Scientific Model CR23X-4M micro-logger with model AM25T multiplexer for expanded channel capability. The DAS shall be in a NEMA 4 weatherproof and lockable enclosure. The DAS shall have 4 megabytes of extended memory, a phone modem, modem surge protector and rechargeable battery. The battery requires a 115 Vac source and

therefore ORNL requests the DAS be placed near the power panel for obtaining the necessary instrument power. ORNL shall provide an independent phone line for communicating with the DAS.

9. ORNL shall fully program the DAS and shall fully document the data acquisition code for use in later trouble shooting problems by ORNL or LBNL personnel.

10. ORNL with support from Ochoa and Shehan will direct the phone service to run independent phone lines for hook up to each DAS for transmitting data by modem. These lines will be completely independent of the homeowner's phone system, and shall remain intact for the 2-year field demonstration.

11. ORNL shall weekly check the data string output by the DAS received over the modem, and shall take responsibility for damage to the DAS and instruments, and will themselves make appropriate repairs.

### Air Tightness of Houses (optional-dependent upon permission of homeowner)

12. ORNL under the coordination of Ochoa and Shehan Construction and the homeowners shall measure the air tightness of the demonstration homes using a Minneapolis Blower Door test apparatus. A Duct Blaster<sup>™</sup> apparatus will be used to check the tightness of the air duct system. Both outside air infiltration and duct leakage will affect air conditioning performance therefore we will attempt to document the tightness of the two homes. The air tightness of the house and ducting shall be checked after Ochoa and Shehan has completed construction but before the homeowner occupies the homes.

13. ONRL also requests the opportunity to conduct the air tightness testing at conclusion of the two-year study, and will coordinate the testing per the approval of the homeowner.

### **Onsite Reflectance Measures**

14. ORNL, LBNL or Elk personnel will visit the site semiannually to measure the reflectance of the test roofs. The measures will require personnel to climb up a ladder to the roof and make the measurement, which will take only about 15 minutes.

### Thermal Scans of Houses (optional-dependent upon permission of homeowner)

15. ORNL personnel request the opportunity to make thermal scans of the homes to judge the relative effectiveness of the roofing systems once the homes are built and occupied. As the roof systems age the thermal scans will help document the overall thermal performance of the roof as compared to their starting performance. The scans are taken outside the home and will be conducted yearly.

### **Composition Shingle Retrieval (optional-dependent upon permission of homeowner)**

16. ELK personnel request the opportunity to remove and replace one possibly as many as three shingles from the roof facing the back of each home on an annual basis. Elk will take the field exposed shingles and conduct some mechanical testing to confirm that the new shingles with CRCMs perform in a consistent manner with existing standard production shingles. Appropriate data shall be shared with ORNL for support of the CEC work contracted to ORNL and LBNL.

### Visitation

17. The homeowners shall agree to allow visitation privileges to ORNL, LBNL or ELK personnel in case of maintenance, repair, routine checks of instruments or the DAS. However, all visits will be coordinated through Ochoa and Shehan Construction or the homeowner's permission to egress said property. Therefore personnel shall schedule visits amenable with the homeowner prior to the actual visit. Visits will be limited to field acquisition and or checks to trouble-shoot instruments and or the DAS.

18. At completion of the two-year study ORNL will remove the DAS, instruments and wires with exception of those embedded in the roof deck.

### CONTACTS

| ORNL Building Envelope Group<br>Andre Desjarlais, Group Leader                  | ELK Group, Inc.<br>Louis T. Hahn Technology<br>Center Manager           | Ochoa and Shehan Construction Company<br>Jerry Wagar Principal Owner |  |  |
|---------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------|--|--|
| Signature:                                                                      | Signature:                                                              | Signature:                                                           |  |  |
| Phone: 865-574-0022<br>FAX: 865-574-9354<br>E-mail: <u>desjarlaisa@ornl.gov</u> | Phone: 972-872-2293<br>FAX: 972-872-2399<br>E-mail: LouHahn@ElkCorp.com | Phone: 530-221-0527<br>FAX: 530-221-0544<br>Email: Ochoa@Shasta.com  |  |  |

# Table A1. Instrument measurements for the home having a standard production shingle roof.The house is located near the end of a cul-de-sac at 2605 Eel Street, Redding CA..

| Instrument                           | Description                                          | Location                                      | Attachment                                   | Channel           |          |  |  |  |  |
|--------------------------------------|------------------------------------------------------|-----------------------------------------------|----------------------------------------------|-------------------|----------|--|--|--|--|
| East Facing Roof                     |                                                      |                                               |                                              |                   |          |  |  |  |  |
| Thermocouple (Type T Cu/Con)         | 26 AWG Unshielded bead                               | Top of Roof Shingle                           | Ероху                                        | 8 T               |          |  |  |  |  |
| "                                    | 26 AWG Unshielded bead                               | Underside of Shingle                          | Ероху                                        | 7 T               |          |  |  |  |  |
| "                                    | 26 AWG Unshielded bead                               | Topside of Deck<br>(between OSB & felt paper) | Taped                                        | 6 T               |          |  |  |  |  |
| Heat Flux Transducer                 | 2-in by 2-in by 0.125-in thick                       | In Deck                                       | Embedded in OSB                              | $2 \text{ Rd}^+$  | 2880     |  |  |  |  |
| Pyranometer Li-Cor                   | Solar Probe                                          | Near ridge at roof gable                      | Mounting bracket                             | $4 \text{ Rd}^+$  | 48819    |  |  |  |  |
| Thermocouple (Type T Cu/Con)         | 26 AWG Unshielded bead                               | Underside of Deck<br>(facing attic)           | Taped                                        | 5 T               |          |  |  |  |  |
| West Facing Roof                     |                                                      |                                               |                                              |                   |          |  |  |  |  |
| Thermocouple (Type T Cu/Con)         | 26 AWG Unshielded bead                               | Top of Roof Shingle                           | Ероху                                        | 4 T               |          |  |  |  |  |
| "                                    | 26 AWG Unshielded bead                               | Underside of Shingle                          | Ероху                                        | 3 T               |          |  |  |  |  |
| "                                    | 26 AWG Unshielded bead                               | Topside of Deck<br>(between OSB & felt paper) | Taped                                        | 2 T               |          |  |  |  |  |
| Heat Flux Transducer                 | 2-in by 2-in by 1/8-in thick                         | In Deck                                       | Embedded in OSB                              | $1 \text{ Wh}^+$  | 48792    |  |  |  |  |
| Pyranometer Li-Cor                   | Solar Probe                                          | Near ridge at roof gable                      | Mounting bracket                             | $5 \text{ Rd}^+$  |          |  |  |  |  |
| Thermocouple (Type T Cu/Con)         | 26 AWG Unshielded bead                               | Underside of Deck<br>(facing attic)           | Taped                                        | 1 T               |          |  |  |  |  |
| Attic interior                       |                                                      |                                               |                                              |                   |          |  |  |  |  |
| Vaisala 50Y                          | DB & RH Probe                                        | Attic air 4-ft above insulation               | Run along support wire                       | 6**               | X4440074 |  |  |  |  |
| Thermocouple (Type T Cu/Con)         | 26 AWG Shielded bead                                 | Top of insulation                             | Laid atop insulation                         | 10 T              |          |  |  |  |  |
|                                      | 26 AWG Unshielded bead                               | Sheet rock surface facing attic               | Taped                                        | 9 T               |          |  |  |  |  |
| Heat Flux Transducer                 | 2-in by 2-in by 1/8-in thick                         | Sheet rock surface facing attic               | Sandwiched between insulation and sheet rock | 3 Rd <sup>+</sup> | 2867     |  |  |  |  |
| House exterior abov                  | /e ridge vent (Not A                                 | pplicable)                                    |                                              |                   |          |  |  |  |  |
| Vaisala 50Y                          | DB & RH Probe                                        | Ambient air 3-ft above roof                   | Mounting bracket                             | NA                |          |  |  |  |  |
| Anemometer                           | Wind velocity                                        | Ambient air 3-ft above roof                   | Mounting bracket                             | NA                |          |  |  |  |  |
| Wind Vane                            | Wind direction                                       | Ambient air 3-ft above roof                   | Mounting bracket                             | NA                |          |  |  |  |  |
| House interior                       |                                                      |                                               |                                              |                   |          |  |  |  |  |
| Vaisala 50Y                          | DB & RH Probe                                        | Entering return grill                         | Duct mounted                                 | 7**               | X4440090 |  |  |  |  |
| Thermocouple (Type T Cu/Con)         | 26 AWG Unshielded bead                               | Leaving evaporator coil                       | Run along support wire                       | 11 T              |          |  |  |  |  |
| Wattnode transducer                  | Model WNA-1P-240-P                                   | Total House Power                             | NEMA enclosure on exterior wall              | 8 Rd <sup>+</sup> |          |  |  |  |  |
| Wattnode transducer                  | Model WNA-1P-240-P                                   | HVAC Power                                    | NEMA enclosure on exterior wall              | 9 Wh <sup>+</sup> |          |  |  |  |  |
| ACL1 Event counter                   | OPTI-Line Monitor with DC<br>power supplied by CR10X | HVAC cycling rate                             | Installed in outdoor<br>condensing unit      | 10                |          |  |  |  |  |
| ** 5-wire shielded cable with Bk for |                                                      | signal & power reference, Rd for Po           | · · · ·                                      | •                 | •        |  |  |  |  |

# Table A2. Instrument measurements for the home having a CRCM shingle roof. The house islocated near the end of a cul-de-sac at 2605 Loggerhead St., Redding CA.

| Instrument                          | Description                                          | Location                                      | Attachment                                   |                   | Channel  |  |  |  |  |  |
|-------------------------------------|------------------------------------------------------|-----------------------------------------------|----------------------------------------------|-------------------|----------|--|--|--|--|--|
| West Facing Roof                    |                                                      |                                               |                                              |                   |          |  |  |  |  |  |
| Thermocouple (Type T Cu/Con)        | 26 AWG Unshielded bead                               | Top of Roof Shingle                           | Ероху                                        | 8 T               |          |  |  |  |  |  |
| "                                   | 26 AWG Unshielded bead                               | Underside of Shingle                          | Ероху                                        | 7 T               |          |  |  |  |  |  |
| "                                   | 26 AWG Unshielded bead                               | Topside of Deck<br>(between OSB & felt paper) | Taped                                        | 6 T               |          |  |  |  |  |  |
| Heat Flux Transducer                | 2-in by 2-in by 0.125-in thick                       | In Deck                                       | Embedded in OSB                              | $2 \text{ Rd}^+$  | 2879     |  |  |  |  |  |
| Pyranometer Li-Cor                  | Solar Probe                                          | Near ridge at roof gable                      | Mounting bracket                             | $4 \text{ Rd}^+$  | 48824    |  |  |  |  |  |
| Thermocouple (Type T Cu/Con)        | 26 AWG Unshielded bead                               | Underside of Deck<br>(facing attic)           | Taped                                        | 5 T               |          |  |  |  |  |  |
| East Facing Roof                    |                                                      |                                               |                                              |                   |          |  |  |  |  |  |
| Thermocouple (Type T Cu/Con)        | 26 AWG Unshielded bead                               | Top of Roof Shingle                           | Ероху                                        | 4 T               |          |  |  |  |  |  |
|                                     | 26 AWG Unshielded bead                               | Underside of Shingle                          | Ероху                                        | 3 T               |          |  |  |  |  |  |
| "                                   | 26 AWG Unshielded bead                               | Topside of Deck<br>(between OSB & felt paper) | Taped                                        | 2 T               |          |  |  |  |  |  |
| Heat Flux Transducer                | 2-in by 2-in by 1/8-in thick                         | In Deck                                       | Embedded in OSB                              | $1 \text{ Wh}^+$  | 2878     |  |  |  |  |  |
| Pyranometer Li-Cor                  | Solar Probe                                          | Near ridge at roof gable                      | Mounting bracket                             | $5 \text{ Rd}^+$  | 48870    |  |  |  |  |  |
| Thermocouple (Type T Cu/Con)        | 26 AWG Unshielded bead                               | Underside of Deck<br>(facing attic)           | Taped                                        | 1 T               |          |  |  |  |  |  |
| Attic interior                      |                                                      |                                               |                                              |                   |          |  |  |  |  |  |
| Vaisala 50Y                         | DB & RH Probe                                        | Attic air 4-ft above insulation               | Run along support wire                       | 6**               | Z2340043 |  |  |  |  |  |
| Thermocouple (Type T Cu/Con)        | 26 AWG Shielded bead                                 | Top of insulation                             | Laid atop insulation                         | 10 T              |          |  |  |  |  |  |
|                                     | 26 AWG Unshielded bead                               | Sheet rock surface facing attic               | Taped                                        | 9 T               |          |  |  |  |  |  |
| Heat Flux Transducer                | 2-in by 2-in by 1/8-in thick                         | Sheet rock surface facing attic               | Sandwiched between insulation and sheet rock | 3 Rd <sup>+</sup> | 2873     |  |  |  |  |  |
| House exterior abov                 | ve ridge vent (Not A                                 | vpplicable)                                   |                                              |                   |          |  |  |  |  |  |
| Vaisala 50Y                         | DB & RH Probe                                        | Ambient air 3-ft above roof                   | Mounting bracket                             | NA                |          |  |  |  |  |  |
| Anemometer                          | Wind velocity                                        | Ambient air 3-ft above roof                   | Mounting bracket                             | NA                |          |  |  |  |  |  |
| Wind Vane                           | Wind direction                                       | Ambient air 3-ft above roof                   | Mounting bracket                             | NA                |          |  |  |  |  |  |
| House interior                      |                                                      |                                               |                                              |                   |          |  |  |  |  |  |
| Vaisala 50Y                         | DB & RH Probe                                        | Entering return grill                         | Duct mounted                                 | 7**               | X435001  |  |  |  |  |  |
| Thermocouple (Type T Cu/Con)        | 26 AWG Unshielded bead                               | Leaving evaporator coil                       | Run along support wire                       | 11 T              |          |  |  |  |  |  |
| Wattnode transducer                 | Model WNA-1P-240-P                                   | Total House Power                             | NEMA enclosure on exterior wall              | 8 Rd <sup>+</sup> |          |  |  |  |  |  |
| Wattnode transducer                 | Model WNA-1P-240-P                                   | HVAC Power                                    | NEMA enclosure on<br>exterior wall           | 9 Wh <sup>+</sup> |          |  |  |  |  |  |
| ACL1 Event counter                  | OPTI-Line Monitor with DC<br>power supplied by CR10X | HVAC cycling rate                             | Installed in outdoor<br>condensing unit      | 10                |          |  |  |  |  |  |
| ** 5-wire shielded cable with Bk fa |                                                      | signal & power reference, Rd for Po           |                                              | 1                 | 1        |  |  |  |  |  |